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Figure 1: Tic-tac-toe game with the swarm of drones: a) A human plays Tic-tac-toe board game against a SwarmPlay. b) Game
board image transformed by the CV system. c) A closed view on the board when drones won the match.

ABSTRACT
We present a new paradigm of games, i.e. SwarmPlay, where each
playing component is presented by an individual drone that has
its own mobility and swarm intelligence to win against a human
player. The motivation behind the research is to make the games
with machines tangible and interactive. Although some research
on the robotic players for board games already exists, e.g., chess,
the SwarmPlay technology has the potential to offer much more en-
gagement and interaction with a human as it proposes a multi-agent
swarm instead of a single interactive robot. The proposed system
consists of a robotic swarm, a workstation, a computer vision (CV),
and Game Theory-based algorithms. A novel game algorithm was
developed to provide a natural game experience to the user. The
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preliminary user study revealed that participants were highly en-
gaged in the game with drones (69% put a maximum score on the
Likert scale) and found it less artificial compared to the regular
computer-based systems (77% put maximum score). The affection
of the user’s game perception from its outcome was analyzed and
put under discussion. User study revealed that SwarmPlay has the
potential to be implemented in a wider range of games, significantly
improving human-drone interactivity.

CCS CONCEPTS
• Human-centered computing → Human-computer interac-
tion (HCI).
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1 INTRODUCTION
One of the potential domains for human-robot interaction research
is physical board games that have an adjustable structure level.
Perceiving the game components and the board, understanding
human movements, reasoning about the state, and manipulating
the game components to win against human players are integral
steps in robot-centric board games [Li et al. 2019; Matuszek et al.
2011].

For the human player, on the other side, the interaction with a
robot provides a fresh perspective on the well-known competitive
games, e.g., robotic rock-paper-scissors with humanoid robot RASA
presented in [Ahmadi et al. 2019]. Nowadays much work is aimed
to improve the AI in such games, either by more sufficient game
strategy systems, e.g., gaming decision system developed for Go
in [Silver et al. 2016] and curling robot with adaptive deep rein-
forcement learning framework proposed in [Won et al. 2020], or
by improving the estimation of the human behavior, e.g., tennis
player’s movement prediction proposed in [Wu and Koike 2020].
However, the system architecture in robot-centric applications has
been relatively little investigated and is narrowed to the single
robotic manipulators and mobile robots [Becker-Asano et al. 2014;
Kyohei et al. 2020; Nugroho et al. 2014]. The research onmulti-robot
games though is mostly focused on coordination between robotic
agents, such as soccer game strategies suggested in [Reis et al. 2013]
and [Liu 2020] that exclude human from the gaming stage.

To upgrade the level of engagement and interactivity of tradi-
tional games, we suggest a novel game paradigm where each game
piece has its own mobility, and behaves jointly with other agents
to win against the opponent. The proposed SwarmPlay technol-
ogy provides CV-driven Human-Swarm interaction (HSI) in board
games. To our knowledge, our prototype is the first approach to-
wards using a multi-UAV system in physical games that involves
human presence. This research focuses on the system architecture
and its validation by user study, followed by a discussion about
future work and potential SwarmPlay game applications.

2 SYSTEM OVERVIEW
2.1 System Architecture
The developed SwarmPlay system consists of Vicon Tracking sys-
tem with 12 IR cameras for drone localization, a CV camera for
game state evaluation, a drone landing table with a game board, PC
with Mocap framework and PC with a drone-control framework, a
CV system, and a decision-making system (Fig. 2). A white board
was divided into 9 cells according to Tic-tac-toe rules. According
to the specified algorithm, drones were landing on a board’s cells
representing Crosses (Xs). Whereas a human plays Noughts (Ox),
placing cards with printed circles on the white board.

To obtain pictures of the game board providing awareness of
a current status of the game, we used a camera Logitech HD Pro
Webcam C920 of @30FPS mounted on the ceiling of the room. The
game board is placed right under the camera. The pictures are sent
to the CV system to determine the human’s turn. After that, data
on the human’s turn as a cell number is sent to the decision-making

system to define a cell where the drones should make their next
turn. CV and decision-making processing is performed on Intel®
Core™ i7-9750HF CPU @ 2.60GHz × 12. The most recent cell data
is sent to a drone-control framework. The framework obtains both
the target cell, where a drone should be sent, and data from the
motion capture system about current drone positions. To get the
high-quality tracking of the drones, we used Vicon motion capture
system with 12 cameras (Vantage V5) covering a 5𝑚3 space. Drones
are sent to the target cells with PID control parameters, i.e., the
target position, speed, and acceleration.
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Figure 2: SwarmPlay system layout: hardware architecture.

2.2 Computer Vision
To detect to which cell the user puts circles, we developed a corre-
sponding Computer Vision system. As its input, we used a picture
taken by an RGB camera mounted on the ceiling of the room where
the gaming board is located. At each step, the system takes a picture
throughout the camera and converts it to grayscale. Then, simple
thresholding and erosion with a kernel 5x5 are applied. After that,
the picture is cropped and divided into 9 small images, one per a
game cell. For each small image, a contour search is performed.
When users make their turn, they put a circle on a cell, which is
then detected as a contour by the CV system and filled with black
pixels.

At the end of each step, the CV system computes the density of
black pixels per a game cell. In this case, big coloured circles show
a great density value. Thus, using some threshold, it makes possible
to separate holes, drones, and empty areas from each other.

After detecting a new circle on the playing field, the CV system
sends a corresponding game cell number, as the latest human turn,
to a decision-making system to solve how exactly drones should
behave in the situation.

3 GAME STRATEGY
3.1 Implementation
Tic-tac-toe game is played on a three-by-three grid. Each player
takes a turn to place a symbol on an open square. The drones play
as an "X" player, and the user is playing as an "O" player. The game
is over if one of the players has three identical elements in a row:
horizontally, vertically, or diagonally. The game can endwith a draw
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result if there is no possibility to achieve any winning combination.
The board is represented by two-dimensional matrix 3x3 (Fig. 3),
where each cell was enumerated as 1, 2, 3, ... 9. Each element of the
matrix equals one of the following value: 0 : Unoccupied Cell; +1:
Drone Symbol "X"; -1: Player symbol "O".

Figure 3: Game board representation in the SwarmPlay sys-
tem.

3.2 Improved Basic Algorithm
We can choose who makes the first turn in our game: the human
or the drone swarm. The algorithm with a moderate level of diffi-
culty is implemented, which allows the human player to win/lose
equally. Our developed algorithm for the Tic-tac-toe is based on
the Basic Algorithm strategy introduced in [Karamchandani et al.
2015], which is focused on the computer-based game scenario.

Since the proposed drone-based scenario of Tic-tac-toe requires
more preparation time and complex actions from the swarm, in
this research we hypothesized that the less complexity of the game
would not meet the player’s expectations. To provide a considerable
challenge for the user, we propose an Improved Simple Algorithm
(see Algorithm 1).

Algorithm 1: Improved Basic Algorithm
while game is not over do

human turn;
checking for winning condition
if drones can win (row, column, diagonal) then

insert "X" in the third cell and end game;
else

if human can win (row, column, diagonal) then
playing defensive;

else
play to make 2 in a row, column, diagonal (50 %);
or random choice (50 %);

drone moving command;
checking for winning condition;
if drones move first then

making the first move (50 %);
or random choice (50 %);

if winning condition then
end game;

4 EXPERIMENTS
4.1 Research Methodology

Participants. We invited 13 participants aged 22 to 43 years
(mean=25.6, std=5.9) to complete the survey. 15.4% of them have
never interacted with drones before, 15.4% regularly deal with
drones, and 69.2% periodically participate in drone-based scenarios.

Procedure. At the beginning of the experiment, the procedure
and game equipment were introduced to each participant. Rules
of Tic-tac-toe were described for 2 participants (15%) who have
never played the game before. The goal of Tic-tac-toe game is to
make a line of 3 playing elements sooner than your opponent. Game
elements, i.e., noughts for human-player and crosses for SwarmPlay,
were represented by cardboard plates with printed black circles and
cross shapes of the drones, respectively. Players placed the playing
elements on the horizontally arranged game board, 1x1.2 m white
board with grid lines. All participants had played two matches with
SwarmPlay. A human made the first move in the first game and
drones in the second. After each game, the game duration and score
were recorded.

At the end of the game, all respondents were asked to evaluate
the SwarmPlay game with a Likert scale (1-5) on seven parameters:
excitement, engagement, latency, challenge, tiredness, stress factor,
and Turing test.

4.2 Experimental results
We conducted a chi-square analysis based on the frequency of
answers in each category.

The results showed that the game parameters are all independent
(min 𝑝 = 0.14 > 0.05). Additionally the chi-square test of indepen-
dence revealed that the participants’ experience with drones does
not affect the evaluation of drone swarm perception criteria, such as
tiredness (𝜒2=10.77, 𝑝=0.29), stress factor (𝜒2=2.53, 𝑝=0.87) and Tur-
ing test (𝜒2=12.19, 𝑝=0.20). The results of the study are presented
in Fig. 4a.

In summary, 38.5% of the participants found the game more
exciting than regular paper-based game; 76.9% did not feel any
discomfort playing along with drones and 69.2% of users found
the SwarmPlay response fast enough (≥ 4) compared to the usual
human-opponent move. The results revealed that participants were
fully engaged in the game based on the Improved Simple Algorithm
(69% put 5 scores, 31% - 4 scores), and 85% claimed they did not get
tired playing with drones (≤ 2). The proposed algorithm proved
itself comparable to average person skills, allowing its opponent to
win or lose equally. Only 23% of participants considered that playing
with a robotic opponent was much distinguishable from the real
person. 62% of respondents evaluated the game being challenging
(≥ 4). Participants show a great interest to try other well-known
board games in a new interpretation with a swarm of drones (Fig.
4b).

According to the results of the survey, the most popular games
which people are willing to play with drones are Billiard with 20.6%
user choice, followed by Battleship (17.6%) and Tetris (17.6%). As
the results from 26 games in total, SwarmPlay managed to win
23.1% of all matches versus 26.9% of the user wins. The average
duration of one game was 67.2 sec. For the games that started with
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(a)

(b)

Figure 4: Experimental results: a) Subjective feedback on
5-point Likert scale. b) Results of the survey: "What other
games, based on SwarmPlay, would you like to play?"

Table 1: Relation between first move and game results

Result: \ Start: SwarmPlay
First move

Human
First move

Average time
(sec)

SwarmPlay won 5 1 65.1
Draw 8 5 69.7
Human won 0 7 58.6
Games in total: 13 13 67.2

the SwarmPlay’s move, the average time was 72.5 sec, which is
14.6% longer than for the games with a human’s first move (61.9
sec).

Discussion. The results revealed that the first move is essential for
the game outcome (see Table 1), with the first player winning in
46% cases. According to the received data, SwarmPlay won 38.5% of
matches when drones started the game, while drones won only 7.7%
when a human player moved first. Draw outcomes occurred more
frequently when SwarmPlay started (61.5%), than when a human
started the game (38.5%). When human players started, they won
in 53.8% games.

Additionally, we discovered that the more sophisticated strategy
SwarmPlay performed and the more points it had, the more human-
like behaviour of the SwarmPlay participants mentioned.

5 CONCLUSIONS AND FUTUREWORK
We have developed SwarmPlay, the system in which human plays
against the swarm of drones. Our experimental results show that
38.5% of the participants found the game more exciting than regular
paper-based games, and 76.9% of users did not feel stress while
participating in the HDI scenario.

Participants were engaged with the novel drone interaction tech-
nology (engagement mean score equals 4.7 out of 5.0) and indicated
their readiness to play other drone-based games such as Billiard
(20.6% user choice), Battleship (17.6%), and Tetris (17.6%). Therefore,
the proposed SwarmPlay technology can potentially improve our
way of interaction with game pieces. Machines can learn from a
human’s winning strategy and, more importantly, teach humans
how to achieve such a strategy throughout the interaction with an
intelligent swarm.

The future work will be devoted to more advanced board games,
and we plan to apply ML techniques to learn the level of the player
and adjust the difficulty level of the game in real-time.
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